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LETTER TO THE EDITOR 

Some asymptotic estimates in the random parking problem 

Y Pomeau 
Dipartement de Physique Thiorique, CEN-Saclay, 91 190 Gif-sur-Yvette, France 

Received 8 April 1980 

Abstract. As shown by exact calculations in one dimension ( d  = 1) and by computer 
experiments for d = 2, the density of the jammed state in the random parking problem tends 
to its limit value as y d ( c o )  - where T is the time and Y d ( c o )  the final density. The pair 
correlation function diverges at contact in the final state. Both properties are due to the sure 
filling of small holes. 

The one-dimensional(1D) parking problem, as posed by Bernal, is the following (RCnyi 
1958): take a 'car' of length 1 and put it at random on a line, then put another car of 
length 1 at random in the remaining space and so on. The process terminates when no 
hole of length larger than 1 remains between two cars. The distribution which is 
obtained in this way is not the Gibbs distribution for hard rods on a line, since in this 
Gibbs ensemble, at any number density smaller than the close packing, the holes are 
Poisson distributed and can be larger than any fixed length. 

The dynamics of the 1D filling process has been studied by Gonziles et a1 (1974) and 
we shall briefly quote here part of their results. 

The natural unit of length is the length of a car, say 1, so that the unit of number 
density will be 1-l. Furthermore, the dynamics of the filling process enters as follows: 
one tries to insert cars at random on the line at a rate R per unit length and time. Since 
the attempts for inserting Aew cars are made at random, sometimes one finds an already 
occupied place and must try again. Of course checks become more and more frequent 
as time goes on. The unit time is (Rl)-'. With these dimensionless units, the number 
density at time r is 

y l ( r )  = IOTdu exp( - 2  u-'(l -e-") du ) 
where the subscript '1' refers to the 1D character of the problem. As r goes to infinity 
one recovers the limit density found by RCnyi: 

yl(m) = Iow du exp( - 2 lou u- '( l  -e-") dv ) = 0.7476 . . , , 

Near r = CO, y l ( r )  expands as 

where y is Euler's constant. 
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The same problem has been examined in two dimensions, with either oriented hard 
squares or hard discs (Finegold and Donne11 1979). No analytical solution seems to be 
known in these two cases. On numerical evidence Feder (1979) noticed that, at the end 
of the covering process with hard discs, the number density tends to its asymptotic value 
as 

y 2 ( 7 )  = y z ( C 0 )  - u p 2  + . . . 
where again the subscript 2 refers to the dimensionality. 

any dimensionality d is 
From (1) and (2), it is tempting to speculate that the asymptotic behaviour of y d ( 7 )  at 

Y d ( 7 )  Y d ( W ) - u d 7 - 1 ’ d  +, . . (3) 
with ad > 0. In the present Letter, we show that (3) is indeed true when the parked cars 
are spheres, as we shall assume from now on (that is, hard rods in l D ,  hard discs in 2D, 
etc). Furthermore, we show by a slight extension of the arguments that the pair 
correlation function diverges logarithmically near the contact. 

For this proof, we use the notion of the Voronoi-Dirichlet polyhedron, which is 
defined as follows. Let 9 = {Pi; Pi # Pk unless j = k,  j E N*} be a discrete point set in Rd. 
The Voronoi-Dirichlet polyhedron of Pi(i E N*) is the (convex) polyhedron made of all 
points in Rd closer to Pi than to any other Pi E 9, Pi # Pi. Unless the configuration of 
points 9’ is a very special one, and we shall assume that this is not the case in the random 
parking problem, no point in Rd is at the same distance from more than (d + 1) points in 
9. At d = 2 this implies that three edges meet at each vertex of a Voronoi-Dirichlet 
polyhedron, this vertex being equidistant from three points in 9. 

Another ingredient for explaining (3) is the recognition that the dynamics of the 
filling process proceeds following two steps. Firstly, during the ‘configuration building’ 
step all the large holes are filled up. This first step progresses exponentially to its end: 
consider holes large enough so that once a car fills one, it is still possible to put in at least 
one more car. Unless we have very unlikely conditions, the volume where the centre of 
the first car can lie is bounded from below by a quantity of order I d ,  where 1 is the car 
diameter. By random trials, the number density of these large holes decays at least as 
exp[ - (kRld t ) ] ,  where kld is some lower bound for the volume of these large holes, k 
being some constant and R the parking rate per unit volume and time. 

To obtain the algebraic time convergence to the jamming density, one assumes that 
this configuration building is ended and considers the filling of small holes only; these 
holes are such that, once filled, no other car can be put in them. 

At the end of the filling process, one puts the centres of the cars in small regions 
around the vertices of the Voronoi-Dirichlet polyhedra (VVDP) built up from the set B 
of centres of the already parked cars. These vertices are distant little more than 21 from 
the centres of the (d  + 1) neighbouring cars. To define more precisely the local situation 
around these vertices, let p be the distance from one of these vertices to the centre of the 
adjacent cars, and 0 be the set of angles (two angles in d = 2) defining, for instance, the 
mutual orientations of the edges meeting at the vertex. The number density of VVDP 
in dp dO is by definition p(p,  8 )  dp dO, the whole number density of these vertices being 

If p is a little larger than 21, say p = 21 + S, with S << 1, the allowed region for inserting 
the centre of a new car around a VVDP is a small simplex of volume m = S d f d ( @ ) ,  where 
fd(  . ) depends on angles only, although S d  is a scale factor for size of this simplex. For 
instance, S can be thought as the radius of the inscribed sphere in this simplex. 

dp d@p(p, 0). 
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Thus dp J d@p(p, 0) is the number density of holes with p in [ p ,  p +dp]. As 
U = S d - f d ( @ ) ,  the number density of holes with a volume in [a, U +da]  is q(a) da, where 

A d ,  
( 1 / d ) - 1  4(u)  = U 

with 

We have used p(211-, 0) in this formula, as we are interested in small holes only 
(S -0). As p ( p ,  0) is continuous at p = 21 for any finite time, one may replace 
p ( 2 1 +  S, O), S > 0, by its value extrapolated from p < 21, that is by p(211-, a), as this last 
quantity can be measured after the end of the filling process and is not zero, although 
p ( p ,  0) is obviously zero for p > 21, at the end of the proces. Due to the random filling of 
small holes, q(u) depends on time as q(u, t*) exp[ -Ru(t - t" ) ] ,  where t* is some finite 
time such that the configuration building is practically ended at t > t*. Thus the number 
density of remaining holes at time t is Q(t) = J:* duq(u, t ) ,  where U* is some upper 
bound for the volume of a 'small' hole. From q(u, t )  = u("~)- 'A d exp[ -Ru(t - t*)]: 

t+m JO 

Also, 

thus 

where 

The asymptotic estimate (4) is in agreement with the one guessed from (1) and (2). 
In one dimension, there are no angular variables, and one obtains 

where p ( p )  dp is the number density of holes of length between p and p +dp. From 
equation (42) in Gonzhles et a1 (1974) 

As 

) -- l n t + y +  ..., 
t+W 

the asymptotic estimate obtained in (1) agrees with the one given in (5). 
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Another remark made by Feder (1979) is the divergence of the radial distribution 
function at contact in the final state, both in one and two dimensions. This can be 
explained by the previous sort of argument. 

Let G(r) be this radial distribution function. Given a car with its centre at 0, G(r)dr 
is the probability that another car has its centre between r and r+dr  from this one. 
Consider now a 'fillable' small hole drawn around a VVDP. The car to be parked in this 
hole yields (d  + 1) contributions to G(r) in the range r - 211+, as this hole is close to 
(d  + 1) other cars. Actually, for a given hole this contributes to an angle-dependent pair 
contribution. This angular dependence vanishes either after averaging over all the 
holes or after a convenient angular integration, as we shall do tacitly. 

Let G(rlp, 0) be the contribution to G(r)  of holes in dp, d 0  around (p, 0). A (p, 0) 
hole contributes to G(r) for values of r in the range 21 < r e 21 +&$(e), where the factor 
4(0) accounts for the fact that the maximum distance from a point in the hole to one of 
the (d  + 1) surrounding cars depends on 0. Since all the holes are certainly filled, and 
contribute as a whole (d  + 1) times to G(r), one has 

p(p,  0) being, as before, the probability distribution for the VVDP. This implies that 
near r = 21 and p = 0, G(rlp, 0) is of the form S-'6(S/v, 0), where we have put, for 
convenience, r = 21 + 7. The function 6 can be computed in principle once p(p,  0) is 
given. Its main property here is that it is continuous at 6/77 +CO so that the left-hand 
side of (6)  has a finite limit as 77 + 0. 

Now the contribution of all the small holes to G(r), say Gsh(r), is obtained by 
integration of S - ' 6 ( S / q ,  0) over p and r: 

Gsh(r = 21 + 8) = I d 0  dS S - ' 6 ( S / q ,  0). 
0<8<6* 

The integrand vanishes for 4 (0 )s  < 77. Accordingly, for a given S much smaller than 
S* this is a function of p that is of order S-'6(0, 0) as 7/4(0)<< S << S * ,  and has some 
structure in the region 77 - S.  The contribution of the region q/4(0) << 6 << S* is of order 
In 77 ; this shows that the pair correlation function diverges logarithmicalljr at contact, in 
the range r = 21 + q + 211,. This logarithmic divergence can be made explicit in the 1D 
case, where (Feder 1979) 

G(21+  77) = -21-2A In 77, 
1+0+ 

A again being Euler's constant. Again this direct estimate coincides with the one 
obtained by the above method. 

I wish to thank P C Hemmer who introduced me to the mystery of the random 
sequential adsorption. 
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